SYNTHESIS OF DEUTERIUM-LABELED ACRIVASTINE AND AN ACRIVASTINE METABOLITE

J. B. Thompson ${ }^{1}$, K. W. Blake ${ }^{2}$ and R. W. McNutt ${ }^{1 *}$
${ }^{1}$ Division of Organic Chemistry, Burroughs Wellcome Co. Research Triangle Park, NC 27709; 2Process Research Laboratories, Wellcome Foundation, Ltd., Dartford, Kent DA1 5AH, England

SUMMARY

The antihistamine acrivastine and a metabolite dihydroacrivastine were prepared as their $\left[{ }^{2} \mathrm{H}_{7}\right]$-congeners from $\left[{ }^{2} \mathrm{H}_{8}\right]$-tolualdehyde for use as internal standards in gas chromatography/mass spectroscopy of biological samples.

Key words: acrivastine, antihistamine, deuterium labeling.

INTRODUCTION

Acrivastine is a recently introduced antihistaminic agent (H_{1}-antagonist) with minimal sedative properties (1). Because of its zwitterionic character, acrivastine does not cross the blood-brain-barrier readily and exerts its therapeutic actions in peripheral tissues with little or no effect on central nervous system function.

In the course of clinical studies, samples of deuterium-labeled acrivastine and a prominent metabolite $\mathbf{2}$ were needed as internal standards for quantitative analysis of biological samples via gas chromatography/mass spectroscopy (GC/MS) (2). A minimum of four deuterium atoms was desired to provide unambiguous instrumental resolution. Considerations of synthetic simplicity prompted the incorporation of seven deuterium atoms. Herein we report the syntheses of $\left[2 \mathrm{H}_{7}\right]$-acrivastine 1 and the acrivastine metabolite (E)-3-(6-(3-(1-pyrrolidinyl)-1-([2 $\left.\mathrm{H}_{7}\right]-4$-tolyl)-1-propenyl)-2pyridyl)propionic acid 2 .

RESULTS AND DISCUSSION

The syntheses of both compounds proceeded by similar routes through a common intermediate (Scheme 1). Addition of pyridyllithium $\mathbf{3}$ to $\left[2 \mathrm{H}_{8}\right]$-tolualdehyde provided alcohol $\mathbf{4}$ which was oxidized to ketone $\mathbf{5}$ with pyridinium chlorochromate (3). Palladium catalyzed Heck reaction (4) of $\mathbf{5}$ with ethyl acrylate proceeded smoothly to afford ketoester 6. Wittig reaction of 6 with 2 -(1pyrrolidino)ethyltriphenylphosphonium bromide \mathbf{Z} (5) gave a mixture of E and Z isomers. After
isomer separation by chromatography, the desired E isomer $\boldsymbol{8}$ was hydrolyzed to provide $\left[{ }^{2} \mathrm{H}_{7}\right]$ acrivastine 1 .

Scheme 1.

Preparation of metabolite 2 (Scheme 2) required selective reduction of intermediate ketoester 6. Catalytic hydrogenation with palladium proved to be non-selective, with reduction of the alkene and ketone functions occurring at comparable rates. However, hydrogenation in the presence of Wilkinson's catalyst [(Ph3P)3RhCl] (6) proceeded with complete chemoselectivity to afford 2. Despite concerns that isotopic exchange at the toluene methyl group might be a complication during the Heck reaction or catalytic reduction (7), deuterium NMR and GC/MS confirmed that the isotopic purity of intermediate $\mathbf{2}$ was $>99 \%$. Attempted reaction of $\mathbf{2}$ with the pyrrolidinoethyl Wittig reagent proved troublesome. Although the preceding Wittig reaction with 6 (Scheme 1) produced only the expected isomeric products, the corresponding reaction with $\mathbf{2}$ resulted in a complex mixture under a variety of conditions. In order to eliminate participation of the flexible ester sidechain, ketoester 2 was hydrolyzed to ketoacid 10 , and subsequent Wittig reaction on the sodium salt of 10 proceeded without difficulty. The resulting E / Z isomer mixture was purified by chromatography and the deuterium-labeled acrivastine metabolite $\mathbf{2}$ was isolated by selective crystallization.

Scheme 2.

Analysis by gas chromatography/mass spectroscopy indicated that the deuterium-labeled 1 and $\mathbf{2}$ were obtained in $>99 \%$ isotopic purity. Use of the compounds in quantitative analysis of biological samples has been reported elsewhere (2).

EXPERIMENTAL

Melting points were determined with a Thomas Hoover capillary melting point apparatus and are uncorrected. TLC was performed on Whatman 250μ MK6F plates of silica gel with fluorescent indicator; spots were detected with UV light. HPLC was performed on a Waters 840 Data System with two Waters Model 510 pumps, WISP injector and Waters 490 UV detector set at 230, 254, 280 nm (maxplot mode) using a β-cyclodextrin Cyclobond I column ($4.6 \times 250 \mathrm{~mm}, 5 \mu, 0.75 \mathrm{ml} / \mathrm{min}$) or Versa- pack C_{18} column ($4.6 \times 250 \mathrm{~mm}, 10 \mu$). NMR spectra were recorded using a Varian XL-200 spectrometer. Preparative column chromatography was done using the flash chromatography technique ${ }^{8}$ on Silica Gel 60 (40-63 μ, E. Merck No. 9385). Elemental analyses were performed by Atlantic Microlab, Inc. and mass spectra by Oneida Research Services, Inc.
α-(6-Bromo-2-pyridyl)-[$\left.{ }^{2} \mathrm{H}_{8}\right]$-4-methylbenzyl alcohol (4). A stirred solution of 2,6dibromopyridine ($93.3 \mathrm{~g}, 0.39 \mathrm{~mol}$) in $\mathrm{Et}_{2} \mathrm{O}(2.0 \mathrm{~L})$ under N_{2} was cooled to $-78^{\circ} \mathrm{C}$ and 2.22 M n BuLi in hexane (173.5 mL) was added dropwise during 1 h . The resulting green solution was slowly added to a solution of [${ }^{2} \mathrm{H}_{8}$]-4-tolualdehyde ($49.5 \mathrm{~g}, 0.39 \mathrm{~mol}$; Cambridge Isotope Laboratories, Inc.) in $\mathrm{Et}_{2} \mathrm{O}(1.5 \mathrm{~L})$ under N_{2} and stirring at $-78^{\circ} \mathrm{C}$. After 1.5 h , the mixture was warmed to
ambient temperature and quenched by slowly adding saturated aq $\mathrm{NH}_{4} \mathrm{Cl}$ solution (150 mL). The reaction solution was washed with $\mathrm{H}_{2} \mathrm{O}(800 \mathrm{~mL})$, with saturated NaCl solution (800 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to a yellow oil. Chromatography ($5-10 \%$ $\mathrm{EtOAc} /$ hexane) gave the alcohol ($4,70.3 \mathrm{~g}, 64 \%$), TLC; one spot with $25 \% \mathrm{EtOAc} /$ hexane, $\mathrm{R}_{\mathrm{f}}=0.40$; HPLC: one major peak on Versapack C_{18} with $40 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} / 0.1 \% \mathrm{~F}_{3} \mathrm{CCOOH}$, $\mathrm{K}^{\prime}=11.33 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta: 4.33(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.13(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 7.36$ (d, J=7.8 Hz, 1H, H-5), 7.46 (t, 1H, H-4); MS (CI/CH4) m/z: 286 ($67.2, \mathrm{M}+1$), 268 (52.2, M-17). Anal Calcd for $\mathrm{C}_{13} \mathrm{H}_{4} \mathrm{D}_{8} \mathrm{BrNO}: \mathrm{C}, 54.56 ; \mathrm{H}+\mathrm{D}$ as $\mathrm{H}, 4.23 ; \mathrm{N}, 4.89 ; \mathrm{Br}, 27.92$. Found: $\mathrm{C}, 54.50$; $\mathrm{H}+\mathrm{D}$ as $\mathrm{H}, 4.29 ; \mathrm{N}, 4.85 ; \mathrm{Br}, 27.86$.

6-Bromo-2-pyridyl-[$\left.2^{\mathrm{H}_{7}}\right]$-4-tolyl ketone (5). A mixture of 4 ($44.5 \mathrm{~g}, 0.16 \mathrm{~mol}$) and pyridinium chlorochromate ($69.0 \mathrm{~g}, 0.32 \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(650 \mathrm{~mL})$ was stirred at room temperature for 20 h . The black mixture was filtered through a bed of silica gel and further eluted with $\mathrm{Et}_{2} \mathrm{O}$ (2.0 L) to give 3 as pale yellow crystals ($40.5 \mathrm{~g}, 92 \%$), M.P. $=94-96^{\circ} \mathrm{C}, \mathrm{TLC}$: one spot with $25 \% \mathrm{EtOAc} /$ hexane, $\mathrm{R}_{\mathrm{f}}=0.55$; HPLC: one major peak on Versapack C_{18} with $60 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} / 0.1 \% \mathrm{~F} 3 \mathrm{CCOOH}$, $\mathrm{K}^{\prime}=6.54 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta: 7.63-7.78(\mathrm{~m}, 2 \mathrm{H}$, arom$), 7.93-8.02(\mathrm{~m}, 1 \mathrm{H}$, arom $) ; \mathrm{MS}$ $\left(\mathrm{Cl} / \mathrm{CH}_{4}\right) \mathrm{m} / \mathrm{z}: 311(7.1, \mathrm{M}+29), 283(100.0, \mathrm{M}+1)$.
Anal Calcd for $\mathrm{C}_{13} \mathrm{H}_{3} \mathrm{D} 7 \mathrm{BrNO}: \mathrm{C}, 55.14 ; \mathrm{H}+\mathrm{D}$ as $\mathrm{H}, 3.56 ; \mathrm{N}, 4.95 ; \mathrm{Br}, 28.22$. Found: $\mathrm{C}, 55.13$; $\mathrm{H}+\mathrm{D}$ as $\mathrm{H}, 3.60 ; \mathrm{N}, 4.97$; $\mathrm{Br}, 28.17$.
(E)-Ethyl 3-(6-([2 $\left.{ }^{2} \mathrm{H}_{7}\right]$-4-toluoyl)-2-pyridyl)acrylate (6). A stirred mixture of $\mathbf{5}$ (40.0 $\mathrm{g}, 0.14$ mol), tributylamine ($33.4 \mathrm{~mL}, 0.14 \mathrm{~mol}$), triphenylphosphine ($3.7 \mathrm{~g}, 0.014 \mathrm{~mol}$), palladium(II) acetate ($1.6 \mathrm{~g}, 7 \mathrm{mmol}$) and ethyl acrylate ($37 \mathrm{~mL}, 0.34 \mathrm{~mol}$) under N_{2} was heated at $130^{\circ} \mathrm{C}$ for 8 h (additional 18 mL of ethyl acrylate was added after 4 h). The mixture was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0$ L), washed with 0.2 M HCl and $\mathrm{H}_{2} \mathrm{O}$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to a nm (maxplot mode) using a β-cyclodextrin Cyclobond I column ($4.6 \times 250 \mathrm{~mm}, 5 \mu, 0.75 \mathrm{ml} / \mathrm{min}$) or Versa- pack C_{18} column ($4.6 \times 250 \mathrm{~mm}, 10 \mu$). NMR spectra were recorded using a Varian XL-200 spectrometer. Preparative column chromatography was done using the flash chromatography technique ${ }^{8}$ on Silica Gel 60 (40-63 μ, E. Merck No. 9385). Elemental analyses were performed by Atlantic Microlab, Inc. and mass spectra by Oneida Research Services, Inc.
α-(6-Bromo-2-pyridyl)-[2 $\left.\mathrm{H}_{8}\right]$-4-methylbenzyl alcohol (4). A stirred solution of 2,6dibromopyridine ($93.3 \mathrm{~g}, 0.39 \mathrm{~mol}$) in $\mathrm{Et}_{2} \mathrm{O}(2.0 \mathrm{~L})$ under N_{2} was cooled to $-78^{\circ} \mathrm{C}$ and 2.22 Mn BuLi in hexane (173.5 mL) was added dropwise during 1 h . The resulting green solution was slowly added to a solution of $\left[{ }^{2} \mathrm{H}_{8}\right]$-4-tolualdehyde $(49.5 \mathrm{~g}, 0.39 \mathrm{~mol}$; Cambridge Isotope Laboratories, Inc.) in $\mathrm{Et}_{2} \mathrm{O}(1.5 \mathrm{~L})$ under N_{2} and stirring at $-78^{\circ} \mathrm{C}$. After 1.5 h , the mixture was warmed to ambient temperature and quenched by slowly adding saturated aq $\mathrm{NH}_{4} \mathrm{Cl}$ solution (150 mL). The reaction solution was washed with $\mathrm{H}_{2} \mathrm{O}(800 \mathrm{~mL})$, with saturated NaCl solution (800 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to a yellow oil. Chromatography ($5-10 \%$ EtOAc/hexane) gave the alcohol ($4,70.3 \mathrm{~g}, 64 \%$), TLC: one spot with $25 \% \mathrm{EtOAc} / \mathrm{hexane}$, $\mathrm{R}_{\mathrm{f}}=0.40$; HPLC: one major peak on Versapack C_{18} with $40 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} / 0.1 \% \mathrm{~F} 3 \mathrm{CCOOH}$, $\mathrm{K}^{\prime}=11.33 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta: 4.33(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.13(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 7.36$
(d, J=7.8 Hz, 1H, H-5), $7.46(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}-4) ; \mathrm{MS}\left(\mathrm{CI} / \mathrm{CH}_{4}\right) \mathrm{m} / \mathrm{z} ; 286(67.2, \mathrm{M}+1), 268(52.2, \mathrm{M}-17)$. Anal Calcd for $\mathrm{C}_{13} \mathrm{H}_{4} \mathrm{D}_{8} \mathrm{BrNO}: \mathrm{C}, 54.56 ; \mathrm{H}+\mathrm{D}$ as $\mathrm{H}, 4.23 ; \mathrm{N}, 4.89 ; \mathrm{Br}, 27.92$. Found: $\mathrm{C}, 54.50$; $\mathrm{H}+\mathrm{D}$ as $\mathrm{H}, 4.29 ; \mathrm{N}, 4.85 ; \mathrm{Br}, 27.86$.

6-Bromo-2-pyridyl- $\left[{ }^{2} \mathrm{H}_{7}\right]$-4-tolyl ketone (5). A mixture of $4(44.5 \mathrm{~g}, 0.16 \mathrm{~mol}$) and pyridinium chlorochromate $(69.0 \mathrm{~g}, 0.32 \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(650 \mathrm{~mL})$ was stirred at room temperature for 20 h . The black mixture was filtered through a bed of silica gel and further eluted with $\mathrm{Et}_{2} \mathrm{O}(2.0 \mathrm{~L})$ to give $\underline{3}$ as pale yellow crystals ($40.5 \mathrm{~g}, 92 \%$), M.P. $=94-96^{\circ} \mathrm{C}, \mathrm{TLC}$: one spot with 25% EtOAc/hexane, $\mathrm{R}_{\mathrm{f}}=0.55$; HPLC: one major peak on Versapack C_{18} with $60 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} / 0.1 \% \mathrm{~F}_{3} \mathrm{CCOOH}$, $\mathrm{K}^{\prime}=6.54 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta: 7.63-7.78(\mathrm{~m}, 2 \mathrm{H}$, arom $), 7.93-8.02(\mathrm{~m}, 1 \mathrm{H}$, arom $) ; \mathrm{MS}$ $\left(\mathrm{CI} / \mathrm{CH}_{4}\right) \mathrm{m} / \mathrm{z}: 311$ (7.1, $\mathrm{M}+29$), 283 ($100.0, \mathrm{M}+1$).
Anal Caled for $\mathrm{C}_{13} \mathrm{H}_{3} \mathrm{D}_{7} \mathrm{BrNO}: \mathrm{C}, 55.14 ; \mathrm{H}+\mathrm{D}$ as $\mathrm{H}, 3.56 ; \mathrm{N}, 4.95 ; \mathrm{Br}, 28.22$. Found: $\mathrm{C}, 55.13$; $\mathrm{H}+\mathrm{D}$ as $\mathrm{H}, 3.60 ; \mathrm{N}, 4.97 ; \mathrm{Br}, 28.17$.
(E)-Ethyl 3-(6-([2 $\left.{ }^{2} \mathrm{H}_{7}\right]$-4-toluoyl)-2-pyridyl)acrylate (6). A stirred mixture of 5 (40.0 $\mathrm{g}, 0.14$ mol), tributylamine ($33.4 \mathrm{~mL}, 0.14 \mathrm{~mol}$), triphenylphosphine ($3.7 \mathrm{~g}, 0.014 \mathrm{~mol}$), palladium(II) acetate ($1.6 \mathrm{~g}, 7 \mathrm{mmol}$) and ethyl acrylate ($37 \mathrm{~mL}, 0.34 \mathrm{~mol}$) under N_{2} was heated at $130^{\circ} \mathrm{C}$ for 8 h (additional 18 mL of ethyl acrylate was added after 4 h). The mixture was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0$ L), washed with 0.2 M HCl and $\mathrm{H}_{2} \mathrm{O}$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to a dark oily residue. Crystallization from cyclohexane gave pale yellow crystals of $6(22.0 \mathrm{~g}, 52 \%)$, M.P. $=109-111^{\circ} \mathrm{C}$, TLC: one spot with 25% EtOAc/hexane, $\mathrm{R}_{\mathrm{f}}=0.40$; HPLC: one major peak on Versapack C_{18} with $70 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} / 0.1 \% \mathrm{~F}_{3} \mathrm{CCOOH}, \mathrm{K}=3.11 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta$: $1.33\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 4.27\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 6,89,7.72(\mathrm{~d}, \mathrm{~J}=15.7 \mathrm{~Hz}, 1 \mathrm{H}$ each, $-\mathrm{CH}=\mathrm{CH}-$), 7.58 (d of $\mathrm{d}, \mathrm{J}=1.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}$, arom), $7.81-8.05\left(\mathrm{~m}, 2 \mathrm{H}\right.$, arom); $\mathrm{MS}\left(\mathrm{Cl} / \mathrm{CH}_{4}\right) \mathrm{m} / \mathrm{z}$: 331 ($9.0, \mathrm{M}+29$), 303 (100.0, M+1). Anal Calcd for $\mathrm{C}_{18} \mathrm{H}_{10} \mathrm{D}_{7} \mathrm{NO}_{3}: \mathrm{C}, 71.50 ; \mathrm{H}+\mathrm{D}$ as $\mathrm{H}, 5.67$; $\mathrm{N}, 4.63$. Found: C, 71.42; H+D as $\mathrm{H}, 5.70 ; \mathrm{N}, 4.62$.
(E)-Ethyl 3-(6-((E)-3-(1-pyrrolidinyl)-1-([2 $\left.\mathrm{H}_{7}\right]$-4-tolyl)-1-propenyl)-2-pyridyl)acrylate (8). A
solution of $2.14 \mathrm{M} \mathrm{n}-\mathrm{BuLi}$ in hexane (42 mmol) was added dropwise to a suspension of pyrrolidinoethylphosphonium bromide (5) ($7,17.5 \mathrm{~g}, 40 \mathrm{mmol}$) in THF (300 mL) at $0^{\circ} \mathrm{C}$ with stirring under N_{2}. The resulting dark colored solution was stirred for 2 h at $0^{\circ} \mathrm{C}$, treated with a solution of $6(12.0 \mathrm{~g}, 40 \mathrm{mmol})$ in THF (150 mL) and heated at reflux for 2 h . The mixture was concentrated and chromatography ($\mathrm{EtOAc}-8 \% \mathrm{MeOH} / \mathrm{EtOAc}$) gave two fractions. The first fraction was crystallized from acetone to give tan crystals of $8(2.0 \mathrm{~g}, 14 \%), \mathrm{M} . \mathrm{P} .=112-113^{\circ} \mathrm{C}, \mathrm{TLC}$: one spot with $\mathrm{MeOH}, \mathrm{R}_{\mathrm{f}}=0.45$; HPLC: one peak on β-cyclodextrin Cyclobond I with $50 \% \mathrm{MeOH} / 0.1 \mathrm{M}$ $\mathrm{NH}_{4} \mathrm{OAc}$, retention time $=8.15 \mathrm{~min} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta: 1.35\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right.$, $1.77\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 2.53\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NCH}_{2}\right), 3.19(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH} 2 \mathrm{CH}=)$, $4.27\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 6.83(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}$, arom), $7.04,7.67(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}=\mathrm{CHCOOEt}), 7.22(\mathrm{~m}, 2 \mathrm{H}$, arom$), 7.50\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}=\right) ; \mathrm{MS}\left(\mathrm{CI} / \mathrm{CH}_{4}\right) \mathrm{m} / \mathrm{z}: 412(9.0$, $\mathrm{M}+29$), 383 ($100.0, \mathrm{M}^{+}$).
Anal Calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{D}_{7} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, $75.16 ; \mathrm{H}+\mathrm{D}$ as $\mathrm{H}, 7.36 ; \mathrm{N}, 7.30$. Found: $\mathrm{C}, 75.20 ; \mathrm{H}+\mathrm{D}$ as H, 7.36; N, 7.26.

The second fraction was the \underline{Z}-isomer ($4.6 \mathrm{~g}, 30 \%$), TLC: one major spot with $\mathrm{MeOH}, \mathrm{R}_{\mathrm{f}}=0.27$; HPLC: one major peak on β-cyclodextrin Cyclobond I with $50 \% \mathrm{MeOH} / 0.1 \mathrm{M} \mathrm{NH} 4 \mathrm{OAc}$, retention time $=9.66 \mathrm{~min} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta: 1.34\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 2.09(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2}$), $3.33\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NCH}_{2}\right), 3.93\left(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}=\right), 4.28(\mathrm{q}$, $2 \mathrm{H}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}$), $6.43(\mathrm{~m}, 1 \mathrm{H}$, arom), $6.85,7.55(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CHCOOEt}), 7.09$, 7.41 (d, J=8 Hz, 2 H , arom), 7.71 (t, $1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}=$).
(E)-3-(6-((E)-3-(1-Pyrrolidinyl)-1-([2 $\left.{ }^{2} 7\right]$-4-tolyl)-1-propenyl)-2-pyridyl)acrylic acid
$\left(\left[{ }^{2} \mathrm{H} 7\right]\right.$-acrivastine, 1). A mixture of $\underline{8}(675 \mathrm{mg}, 1.8 \mathrm{mmol})$ and $2 \mathrm{M} \mathrm{NaOH}(1.8 \mathrm{~mL})$ in ethanol (9 mL) was stirred at room temperature for 16 h . The resulting pale yellow solution was concentrated to remove ethanol. The aqueous residue was acidified to pH 4 by adding $1 \mathrm{M}_{2} \mathrm{SO}_{4}$ and extracted with CHCl_{3}. The CHCl_{3} extract was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to a beige foam. Crystallization from isopropanol gave $1(378 \mathrm{mg}, 59 \%)$ as off-white crystals, M.P.=219M.P. $=219-220^{\circ} \mathrm{C}(\mathrm{dec})$, TLC: one spot with $\mathrm{MeOH}, \mathrm{R}_{\mathrm{f}}=0.48$; HPLC: one peak on β-cyclodextrin Cyclobond I with $50 \% \mathrm{MeOH} / 0.1 \mathrm{M} \mathrm{NH} 4{ }_{4} \mathrm{OAc}$, retention time $=7.89 \mathrm{~min} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200\right.$ MHz) $\delta: 2.06\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 3.27\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NCH}_{2}\right), 3.77(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{NCH}_{2} \mathrm{CH}=\right), 6.77\left(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}\right.$, arom), $7.21-7.64$ (m 5 H , arom, $\mathrm{CH}=\mathrm{CHCOOH}, \mathrm{NCH}_{2} \mathrm{CH}=$); MS ($\mathrm{Cl} / \mathrm{CH}_{4}$) m/z: $356(13.1, \mathrm{M}+1), 97\left(45.6, \mathrm{C}_{6} \mathrm{H}_{11} \mathrm{~N} \cdot\right)$.
Anal Calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{D}_{7} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, $74.33 ; \mathrm{H}+\mathrm{D}$ as $\mathrm{H}, 6.80 ; \mathrm{N}, 7.88$. Found: $\mathrm{C}, 74.24 ; \mathrm{H}+\mathrm{D}$ as H, 6.89; N, 7.85 .

Ethyl 3-(6-([$\left.{ }^{2} \mathrm{H}_{7}\right]$-4-toluoyl)-2-pyridyl)propionate (9). Tris(triphenylphosphine)rhodium(1) chloride ($11.1 \mathrm{~g}, 12.0 \mathrm{mmol}$) and $6(8.0 \mathrm{~g}, 26.4 \mathrm{mmol})$ were combined in benzene (300 mL) and the resulting mixture was stirred under hydrogen (1 atm) for 24 h at room temperature. Hydrogen uptake was 812 mL (theoretical volume, 592 mL). The mixture was concentrated and purified by chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give 2 as a greenish-yellow oil ($6.8 \mathrm{~g}, 85 \%$), TLC: one spot with 25% EtOAc/hexane, $\mathrm{R}_{\mathrm{f}}=0.40$; HPLC: one peak on Versapack C_{18} with $60 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} / 0.1 \%$ $\mathrm{F}_{3} \mathrm{CCOOH}, \mathrm{K}^{\prime}=2.98 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta: 1.21\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 2.82(\mathrm{t}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOEt}$), $3.18\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOEt}\right), 4.06\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 7.34-7.38(\mathrm{~m}, 1 \mathrm{H}$, arom), $7.73-7.85$ ($\mathrm{m}, 2 \mathrm{H}$, arom); MS ($\mathrm{Cl} / \mathrm{CH}_{4}$) m/z: 333 (11.6, M+29), 305 ($100.0, \mathrm{M}+1$). Anal Calcd for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{D}_{7} \mathrm{NO}_{3}$: C, 71.03 ; $\mathrm{H}+\mathrm{D}$ as $\mathrm{H}, 6.29$; $\mathrm{N}, 4.60$. Found: $\mathrm{C}, 71.13 ; \mathrm{H}+\mathrm{D}$ as H , 6.33 , N, 4.58.

3-(6-([2 $\left.{ }^{2} \mathrm{H}_{7}\right]-4$-Toluoyl)-2-pyridyl)propionic acid sodium salt (10). To a stirred mixture of ester $2(2 \mathrm{~g}, 6.6 \mathrm{mmol})$ in $\mathrm{EtOH}(30 \mathrm{~mL})$ was added $2 \mathrm{M} \mathrm{NaOH}(6.6 \mathrm{~mL})$ and the mixture was stirred at room temperature for 20 h . After concentrating to remove the EtOH , the aqueous residue was diluted with $\mathrm{H}_{2} \mathrm{O}$, adjusted to pH 2 by adding 1 N HCl and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried and concentrated to a tan solid. The solid was dissolved in EtOH (50 mL), adjusted to pH 7.98 (the predetermined inflection point) by adding 0.1 N NaOH and the solution was concentrated to a tan solid (10, $1.5 \mathrm{~g}, 71 \%$), M.P. $=179-181^{\circ} \mathrm{C}, \mathrm{HPLC}$: one peak on Versapack C_{18} with $50 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} / 0.1 \% \mathrm{~F}_{3} \mathrm{CCOOH}, \mathrm{K}^{\prime}=2.64 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}, 200 \mathrm{MHz}\right) 8: 2.62(\mathrm{t}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COONa}$), $3.10\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COONa}\right.$), $7.59(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}$, arom), 7.69 (d, J=7.8
$\mathrm{Hz}, 1 \mathrm{H}, \operatorname{arom}), 7.97$ (t, 1 H , arom); MS (FABNEG) m/z: $298\left(\mathrm{M}^{-}\right), 275(\mathrm{M}-\mathrm{Na})$.
Anal Calcd for $\mathrm{C}_{16} \mathrm{H}_{7} \mathrm{D}_{7} \mathrm{NO}_{3} \mathrm{Na}: \mathrm{C}, 64.42 ; \mathrm{H}+\mathrm{D}$ as $\mathrm{H}, 4.73 ; \mathrm{N}, 4.70 ; \mathrm{Na}, 7.71$. Found: C, 64.46; $\mathrm{H}+\mathrm{D}$ as $\mathrm{H}, 4.74 ; \mathrm{N}, 4.68 ; \mathrm{Na}, 7.67$.
(E)-3-(6-(3-(1-Pyrrolidinyl)-1-([$\left.{ }^{2} \mathrm{H}_{7}\right]-4$-tolyl)-1-propenyl)-2-pyridyl)propionic acid (2).

A solution of 2.14 M n -BuLi in hexane (16 mmol) was added dropwise to a suspension of pyrrolidinoethylphosphonium bromide ($7,6.6 \mathrm{~g}, 15 \mathrm{mmol}$) in THF (35 mL) with stirring under N_{2} at $0^{\circ} \mathrm{C}$. The resulting dark colored solution was stirred for an hour at $0^{\circ} \mathrm{C}$ and treated with $10(4.5 \mathrm{~g}$, 15 mmol). The reaction was allowed to warm to room temperature during 2 h and then heated at reflux for 2 h . The reaction was diluted with $\mathrm{H}_{2} \mathrm{O}$, extracted with $\mathrm{Et}_{2} \mathrm{O}$ (discarded) and the aqueous solution was acidified to $\mathrm{pH} 5-6$ by adding 1 N HCl . Extraction with CHCl_{3} gave a beige foam (5.7 g) after drying and concentration. Chromatography of the foam ($25 \% \mathrm{MeOH} / \mathrm{EtOAc}-\mathrm{MeOH}$) gave 2.4 g of product. Crystallization from acetone gave white crystals of $2(0.8 \mathrm{~g}, 15 \%)$, M.P. $=154-156^{\circ} \mathrm{C}$, TLC: one spot with $\mathrm{MeOH}, \mathrm{R}_{\mathrm{f}}=0.35$; HPLC: one peak on β-cyclodextrin Cyclobond I with $50 \% \mathrm{MeOH} / 0.1 \mathrm{M} \mathrm{NH} 4 \mathrm{NAc}^{\mathrm{OAc}}$, retention time $=7.01 \mathrm{~min}$; ${ }^{1} \mathrm{H}$-NMR $\left(\mathrm{CDCl}_{3}\right.$, $200 \mathrm{MHz}) \delta: 2.02\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2}\right.$), 2.72-2.86 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$), 3.12-3.30 ($\mathrm{m}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NCH}_{2}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$), $3.68\left(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}=\right), 6.61(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}$, 1 H , arom), $7.04\left(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, 1 \mathrm{H}\right.$, arom), $7.25\left(\mathrm{t}, 1 \mathrm{H}\right.$, arom), $7.40\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}=\right)$; MS $\left(\mathrm{Cl}^{2} / \mathrm{CH}_{4}\right) \mathrm{m} / \mathrm{z}: 386(7.2, \mathrm{M}+29), 358$ ($100.0, \mathrm{M}+1$), 296 ($86.1, \mathrm{M}-61$).
Anal Caled for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{D}_{7} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, $73.91 ; \mathrm{H}+\mathrm{D}$ as $\mathrm{H}, 7.33 ; \mathrm{N}, 7.84$. Found: $\mathrm{C}, 73.70 ; \mathrm{H}+\mathrm{D}$ as H, 7.37; N, 7.80 .

REFERENCES

1. (a) Cohen, A.F., Hamilton, M.J., Liao, S.H.T., Findlay, J.W.A. and Peck, A.W.--Eur. J. Clin. Pharmacol. 28: 197 (1985); (b) Manna, V.K., Marks, P., Gibson, J.R.--J. Int. Med. Res. 20: 106 (1992); (c) Findlay, J.W.A. and Coker, G.G.--U.S. Patent 4,650,807 (1987)
2. Chang, S.Y., Nelson, F.R., Findlay, J.W.A. and Taylor, L.C.E.--J. Chromatogr. 497: 288 (1989)
3. (a) Cory, E.J. and Suggs, J.W.--Tetrahedron Lett.: 2647 (1975); (b) Piancatelli, G., Scettri, A. and D'Auria, M.--Synthesis: 245 (1982)
4. Harmon, R.E., Gupta, S.K. and Brown, D.J.--Chem. Rev. 73: 21 (1973)
5. Copp, F.C.--U.S. Patent $3,560,494$ (1971)
6. (a) Heck, R.F.--Palladium Reagents in Organic Syntheses, Academic Press: London (1985), (b) Heck, R.F.--Org. React. 27: 345 (1982)
7. Ofosu-Asante, K. and Stock, L.M.--J. Org. Chem. 51: 5452 (1986)
8. Still, W.C., Kahn, M. and Mitra, A. - J. Org. Chem. 43: 2923 (1978)
